

Agenda

4			4 .
1.	Intro	duc	tion

2. Proposed scenario

3. Modulation overview

4. Simulation - to test the proposed scenario

5. Experimentation - to test the modulation

6. Conclusions

The Beginning

- Why optical communications instead of radio frequency (RF)?
- How did we optically communicate before?
- Why use a modulated retro-reflector (MRR)?
- Why do we care?

My Proposal

- Let's say....Mars
- Orbiter contains the laser, rover contains the MRR

Orbiter System

Surface Unit System

How to Modulate Our Beam

- Keep it simple:
 - Pulse Position Modulation (PPM)
- But nested PPM...with a guard time slot

Let Us Simulate

Components

- 1550 nm laser
- Avalanche photodiode detectors (gain of 100)

Link Budget Values

- Target Error Rate 10⁻⁶ BER
- Planetary irradiance: 0.00874 W/cm²/sr/µm
- Use Mars Reconnaissance Orbiter (MRO)
 - BSP files of MRO's aerobreaking

- Aperture detector diameters: 10 cm and 2 cm
- MRR aperture diameter: 2 cm
- MRR surface roughness: 2 cm
- Sky irradiance: 0.0035 W/cm²/sr/µm
- Downlink data rate: 150 kbps
- Uplink data rate: 300 kbps

Some Results

- 45.85 total line-of-sight minutes
- Calculations require 30-degree limit ~6.55 minutes
- Some points in the data had enough margin to increase the data rate

Testing Our Modulation

Component changes from the simulation

- 635 nm (red) laser
- MRR is mirror and liquid crystal shutter
- Beam splitter
- Arduino Uno and Mega 2560

ASA

Proof

- Laser sends 1011
- Surface Unit adds within each bit three bits: 011

Rover Orbiter

Conclusions and Future Work

- Two parts of the system were successful in their test
 - Proposed scenario is possible, i.e. proved by simulation
 - Modulation scheme is feasible, i.e. proved by experimentation
- Proposed scenario was calculated at less than optimal conditions
 - Still performed better than Electra on Curiosity in most cases
 - Higher data rates are possible!
- Ideal for small mobile low power situations

Future Work:

- See how our contact times for communication improve lowering down to Electra
- Check out other modulation schemes that might be better optimized for this communication

Any Questions?

